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One of the authors has shown in [I] that, for a number of symmetrical configurations of 
sources and sinks, the stream function J’ regarded as a function of the point (w, 6) in the 
plane of the filtration rate hodograph (w is the rate of filtration and 0 is the angle made 

made by it with the z-axis), satisfies Eq, 
f?lI’ 

~(uJ+QC~-+(4)$; +*=o (0.1) 

in a semi-infinite strip O< w ( K, 0 < 0 < 6, with the exception of a segment 

O<w<a; 0% OI or a ray 0 < w < ti, 0 = B1. 
Here 1 denotes the characteristic rate proportional to the value of the limiting gradi- 

ent, the latter given by the condition that, if the modulus of the pressure gradient falls 
below the limiting value in some region, then there will be no motion within that region 
(stagnation zone). The problem thus reduces to the determination of the velocity field 
around the sources and sinks and of the boundaries of resulting stagnation zones. No exact 
solution of this problem has been obtained for an arbitrary value of a . 

When the filtration law is linear (h = 0) , Eq. (0.1) becomes a Laplace’s equation in 
polar coordinates (w, B), and its solution is easily obtained by means of a conformal 
transformation. This suggests that, when h is small, then expansion in a small parameter 
may offer a possible method of solution of (0.1). However, the method of small parame- 

ter cannot be applied directly to (0. l), since h appears in the coefficient of the higher 
derivative and becomes zero when w = G, i.e. on the boundaries of stagnation zones. 

Below we give a method of constructing an expansion in the small parameter h , which 
is valid throughout. To simplify the calculations, we shall consider the case of two 
sources of equal intensity (see e. g. Cl]), in which additional symmetry reduces the map- 

ping on the hodograph plane to a semistrip of width &= I& n. The method is, nevertheless, 

applicable to the general case. 

1. Formulation of the problem and irr reduction to a singular 
intsgral equation. 1’. We shall consider a problem corresponding to a flow 
emerging from two sources of equal intensity, separated by’ the distance of 2L. 

We shall use the Cartesian zy-coordinate system with the origin at the center of sym- 
metry and the 5 -axis passing through the sources. General considerations [l] infer that 
a symmetrical stagnation zone appears in this problem. This zone is bounded by four 
arcs and the resulting figure resembles an astroid with its vertices, which are cusp points, 
lying on the coordinate axes. By symmetry we need only consider the flow in the second 
quadrant. The corresponding problem on the hodograph plane consists of the determina- 

tion of the stream function 9 as a solution of (0.1) in the semistrip 0 < u < ‘/s z 

0 <w (00, under the following conditions : 
wJ* 0) = 0, $(O, 0) = 0 

$u, -+o (w<a), a*Y&)1~2n) - -$ (i<w<cw) (1.1) 

872 
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The velocity ru becomes zero at the tip of the stagnation zone lying on the y-axis, 
and when y + 00 , therefore it passes through a maximum, The magnitude a (previously 

undefined) which appears in the formulation of (1, l), represents the maximum value of 
the filtration rate on the axis of symmetry in the physical plane, perpendicular to the 
line connecting the sources. We ffnd it more convenient to fix the value of a and find 
the corresponding value of 5, 

Let us introduce the dimensionless filtration rate 

u =10/h 
as the independent variable. The (0.1) becomes 

with the boundary conditions 

Let us now apply to (1.3) the corresponding integral transformation discussed in 1’23, 
For the transform ** (a, 0) we have 

where F is a hypergeometric function. In the following we shall denote, for brevity, 

F(2 -j- i‘f/a,2- i r/C 3, - 24) z F(a,- u) (W 

Multiplying (1.3) by (1 f u)F(a , - u) and integrating by parts we obtain, taking 
into account the conditions at w = 0 and w = w 

Solution of (1.7) which becomes zero when 6 zz 0, has the form 

$*(cc, 8) =A@) sh j”-i& 
and the transformation formula (1.7) of [2] gives 

to 

1c)(% @I== $ r.2 
s 

a (If 4 ;;En” A(a)F(x, ” 

2’, Let us put 
0 

HJ* '/z sl =gf& a, <= <w 

Then we obviously have co 

+)sh’/,nfi= (1 + u)g(u)F(u, -u)du 
S 

(1.11) 

Inserting (1.11) into (I. 9) and substituting the resulting expression into the last bound- 
ary condition of (241, we obtain the following equation fo: g(u) 

t&a 
s 

a% (i -j- a) 
F(% 

o th ?Cz th ‘/a 1/a-z 
--@da I(1 + @g(u) x 

ae 
a) 

X 1”(cC, -rj)dv=-+ 
s 

Ir’ (a, 0) g (4 dv (1.12) 
a-# 
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Putting a = s2 we obtain the following expression for the kernel K(u, u) 

- 11) P (9, - u) ds 

which can be transformed by means of the fbllowing formula (see e. g. [3]) : 

F (2 + is, 2 - is, 3, - z&f = ,:,;f); ;$i”‘i$, &-2-i* x 

XF 2+is, 
( 

is, 1 + 2is, - +- + 
> 

r (3) r (2is) 
r (2 + is) r (1 + is) 

U-a+ is x 

x F (2 -is, - is, A- 2is, - l/u) 

Inserting (1.14) into (1.13) and assuming that the parity of the factor F(S’V 

in the integrand is a function of S. we obtain cb 

K((u, v) = 

x 
r (- 2is) 

r (2 - is) r (1 - is) 
F”(i;46”U) F (9, - v) ds 

where 
Qf --i/U) = F(2 f is, * is, 1 f 2is, - I/ u) 

(1X1)* 

(1.14) 

- u) 

(1.15) 

(1.16) 
let us now apply Formula (1.14) to the function F(s”, - v) ,making at the same 

time the substitution E = iS in (1.15). We obtain 

K(u, v) = Kl(u,-u) + Kz(w u) (1.17) 

3”. In the following we shall utilize the asymptotic expressions for F+. By the Euler’s 
formula [3] we have 

Let us introduce a new variable 
f (1 - 1) 

v=yq-* t 

Then the integral in the right-hand side of (1.19) becomes 
‘1 ” c V-(1 i- v) dv 1 ? 

-+- l=u(i+z&, t/(1-v)S-4vu u2ti -1-u),, s 
+-1 V(i - v)” - 4 uv dv (1.21) 

where n (u) denotes the value of v (t) , which reaches its maximum on the segment (0.1) 

and is given by r& (Id) = 1 _1- 2lL - 2 v’qq7), u -= (1 - n)% / 4n (1.22) 

Let us now put v =. 9~ in the integrals of (1.31) and expand the expressions under the 
radical signs in powers of t? (1 -- vi) / (1 - tP) which is less than unity for 0 c< q Q 1 
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and all u > 01~ provided that 0s > r/s (his small). Then the termwise integration yields 

consequently 

u-=F (2 + z, a, 1 + 2 z, - 

The above expression makes it possible to isolate the principal singular part of the 

kernel K . Putting 

Ko (u, V) = Ko(n, m) = 2@$v) (z)“(+$%y if gocg+($$ 

m (v) = 2u + 1- 2 v’u (1 + o), u = (-ii: ??f)yml (1.24) 

let us represent the integral equation (1.12) in the form 
D) 00 

s 
g(u)Ko(u, tr)dv - -$-~&)[K(u, u)--1(;1(U;If)fdLt~:(u) (1.25) 

01 03 
or, in the n , m-variables, y 

$5 (I)‘% ‘f ~~~~~(~}~d~~ = 
IJ --_iLa 

(1.2%) 
where 

c{~}=g(~)~ M=na(ao)=1$-2a~-2t(a,(a~+1) (1.27) 

By (1.27) we have h!f - 1/(4a,)-tO as A -tO(a, -too). 

2, Solution of the auxiliary problem, We shall consider an auxiliary 
problem obtained by putting the limit gradient in the initial problem equal to zero 
(A = 0). Let Eq. aax ax a2x 

us= + I& ~-t-aea=O (2.f) 

be given on the semistrip 0 < 6 < r@, 0 < w < 00 ~ with the conditions 

x(u, O)=O; x(0, Q-0, 

x (6 %n) = 0 (0 < n < C) ax (u, ‘fin) I &I = a (u) (U < U c @3f (2.2) 

and let a (u} satisfy 
lirncp(u)= Q/n (2.3) 

U-KQ 
Putting 

X (% ‘Ian) = P (u) (u> VI (2*4) 

applying to (2.1) the Mellin transform [4] and repeating the procedure of Section 1, we 
easily obtain, for the function P (u) , the following integral equation: 

‘op 
a3 

1 
ni s 

U-E E ctg _!$ d: \ ,4-’ p (v) dv = ‘p (?4) 

-Go;, b 

Putting now u - i I n and g = 1 I nr, we obtain 
iv ico 

1 ’ P*(m) 
2nio m 5 dm E,ctg+dc=q*(n) (2.6) 

(P+ (n) = p (1 I 4, o* (4 = q (1 I n), M’ = 1 / U) 



676 V, M, Entov and R. L. Salgardk 

which coincides, to withfn the accuracy of notatIou used, with (1.26) (with one excep- 
tion, namely, that the first part of (1.26) is dependent on an unknown function), 

Solution of the problem (2.1) - (2.3) is easily obtained by considering (2.1) as a 
Laplace’s equation in pofar coordinates. Putting z = zuei we obtain, for x , a mixed 

boundary value problem in the first quadrant of the z-plane. Qn mapping it onto a semi- 
plane, we obtain the required sopution using the Keldysh-Sedov formula [SJ. As the 
result, we have (2.71 

Pfu)=$arct>g &*-$n 
J s 

m(P(I/.+u2)-Q0/nln ~f~--v’t4~--U” rlr 
s + US 

II I If,;+ J/m * 

3, Reduction to ths intsgrrl Fredholm aquation, lo. Comparing 
(2.6) with (1.26) we find that when~~~‘, ((1 -i- m)/(l -m)~3~3 G(m),-+ ~*(~~, 

and F(n)+ &p*(n) the above equations become identical. Use of Formula (2.17) to 
solve (2.26) yields 

Substitution of the expression for $’ , in accordance with (1.26) and (I, 27), gives 

(3.2) 

Below we shall consider the integral equation (3.2) only for small values of&f (which 
corresponds to h + 0 ), making at the same time the independent variable proportional 

to M. Introducing new variables 

5 = m/ ill, Y(C) = l(i + n/r&i (1 - M1;)1@ G(MQ (3.3) 

and changing the variables in the inner integration, we obtain 
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2”. Let us consider the difference K* - &* in more detail, By (1.17), (1.18) and 
(1.24) we have 

= 

f 0 
vs=--- 

- Ma)? 
4 MO 

which we shall now consider at smal1.M. Utilizing the fact that the expansions (1.23) 
hold funiformlv in U for the hvcereeometric functions. we obtain 

K* $&, Ma 
) ( 
-Ko' 

Second integral in (3.6) can be converted into a line integral along a staight line 
parallel to the imaginary axis and situated to the right of it at the distance’c, 1/1<c<3/z, 
by adding the contribution from the pole of the integrand at & = V2. The following esti- 
mate is valid for the line integral: 

C-f-i00 

IS I 

< conat Mac 
C-itm 

Thus the intergral along the imaginary axis is equal, to within the required accuracy, 
to the residue at the pole ice 

s 
=- + nid’* (s + I)+4 &f -& 0 (MS) (3.7) 

--iCU 
The first integral of (3.6) can also, depending OII the sign of In (a fs$-1) , be repre- 

sented as a sum of residues of the integrand in the right or left semiplane, As the result 

(3.8) 
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Taking (3.7) into account we find, that the difference K* - KCF* is, within the appro- 
ximation considered, equal to the series appearing in the right-hand sides of (3.8) or (3.9) 

depending on the sign of u ds + 1. Thus we have 

K* (M (s + I)_“‘, Ma) -A-o* (M (fi + I)--“‘, Mc) = 

where 

so that 

l(z) = -j .q&-$ -&--&) @<iI 
n=L 

‘01 

(3.10’ 

(3.11) 

which becomes, on substitution z = Sa , an element&y sum of a geometrical progression. 
3’. Solution of the integral equation (3.4) at small Mean be obtained by the method 

of consecutive approximations. Using (3.11) we find, that a solution is given, with the 
accuracy of up to the terms of the order of M2 , by 

4, Determination of ths rlze of rtagnation zone. We shall use the 
obtained soIution (3. F2) of the integral equation, to find the approximate form of tl?e 
stagnation zone. By (1.9) and (1.11) we have 

In order to determine the form of the boundaries of the stagnation zone, we must [l] 
w 

a(1 +a)sh0 1/i ’ 
\ th J&t shl/z J&n ;, 

(1 -t v)g((tt)F(a, - a)dudcc 

(4.2) 

Let us now make the following substitution in the last integral 

f= Mm, v = (1 - rn)= I 4m (4.3) 

and use the expression for F given by (1.14). Since the integrand appears to be an even 
function of s = T/a, we can integrate with respect to .F from - 00 to =. Using the pre- 
vious asymptotic formulas for the hypergeometric functions, we obtain 

M 

(4.4) 

where the integrand is analytic and decreasing in the upper semiplane (we assume that 
M C ‘/,I). 
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We can thus obtain an expression for h (6) in the form of a series of residues at the 
poles of the integrand function, and they can easily be shown to be situated at the points 
I= Zikwhere k=l, Z,... . In consequence we obtain the following expression with 
the accuracy of up to the AP-th order terms 

h (6) = 64n-IMe aim26 i Y (4) (1 + 0.6ME + 0 (Mz)) E &, (4.5) 
‘0 

Inserting here the expression obtained previously for Y (E), we obtain 

k (0) = 64n-*QMS sin 20 5 arc cos I; (1 -/- o.Cihfc) dc - 

z 64rr-SQM2siu 20 ( AJ i- rllhf) (k(i) 

By [l], the points at the boundary of the stagnation zone are given by 

~(0)+i~(O)‘=*-~~ c% (rp) dcp + cowit 

Substitution of (4.6) yields I, 
12HM” 

2’(O) -t il/ (0) = ;j*,s - (A,,+ AIM + 0 (W)) (- cos30 + i silP 0) (4.7) 

Thus the stagnation zones vary with the parameter M with the accuracy oi up to the 
AP-th order terms. 

Let us now determine the distance between the source and the apex of the stagnation 

zone, usng the Expression i 9”> 
IO = - 

I 
a$ (18, 0) du 

h -ua UO 
” 

(4.8) 

In the present case we insert here (4. l), obtaining 

1 9DduY 
=O = Gh I I 

a”‘(1 +a) 

tJ ” th v/all& 11; J&C 
F (a, --~)dl~(l-tu)6’(~)F(z, - v)dv 

c 
Cl.3 

Using now Formula y 

s 
F (a, b, c, -z)dzs(c--)(a--I)-‘(b-l)-’ 

” 

and transforming the resulting integrals in the manner indicated previously, we obtain 

(4.10) 

This can be computed with the accuracy of up to theAI% order terms following the 
procedure used in obtaining h (6) lfrom (4.5). to yield 

X02?! 
c A L 

y (6) f15 -/- 4A’s -+ ~)+3i (4.11) 
0 
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from which we obtain 

Using (4.5) and (4.12) we obtain 

By (1.27) we have, for large a0 = a J h, 

Av = ‘Al (k I R) 11 _1- s/g (;t I n) + *..I (4.14) 

and finalIy 
.rn = (Q /n(t) (1 -+ l./r!!A. / o.., ) (4.1s) 

r (R) + iy (H) = r& (C)h / fi) (I -i- 3.2li, / n...) ‘(- rtts~V1 -1. i 3119 0) 

6, Anrly~ir of ths stmctwa of the approximate :olutfoa in the 
go n 8 r 8 1 c o I 6, We shall now consider a more general case. Let the problem be for- 

mulated OR the hodograph plane, within a strip with one or several cuts. When h-20 , 
the resulting solution of the problem tends uniformly to a solution corresponding to the 

usual linear filtration law (h = ci) which can be obtained by conformal mapping.How- 

ever, in order to define the boundary of the stagnation zone, we must calculate the Iimit 

for which the uniform convergence cases to hold. Indeed, when w is small, the solution 
near the line w = 0, 0 < 8 < 8* on which 1@(0, 0) = 0, can be represented by 

~F(w, 8, h) = fj R,tiW(2---am, 2+a,, 3,--wwlh)sinhQ 
?Yl=l 

i 

nm 
a m=-p- ) (5.1) 

Since F(2 -a,, 2 -l-am, 3, 0) ~1, the above limit exists for any 8 and is 

equal to 
2 5 B,sin amet 

??I=1 
which shows that all the terms of (5.1) contribute to it. On the other hand,when & = 0. 
the solution for small w can be written as 

+a(p~, 8) = 9 (w, 0, 0) = 5 C,w”msin a,8 (5.2) 
YTL=l 

This implies that the limit x{(l) does not exist when n/o* ( 2, that it is equal to 
zero when z/e* > 2 and that it has a finite value when @* zz i/a n . In each ease 
she behavior at the Iimit is defined by the first term off 5.2). 

The lack of uniformity in approximating the derivatives manifests itself only in a 
narrow strip adjacent to the line w = 0, i.e. within the boundary layer. This suggests 
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a simple example of constructing a uniform approximation, We mlace the required 
exact solution $(o, 0, A) =z$( w, 9) with an approximate one J,r&, e) =*(w, 8, 0) 
in the region W > h and, regarding it as a solution of (&I), continue it into the domain 
of small values of w. This method can be used whenever the ratio Q / 1 is sufficiently 
large and yields only the principal term of the asymptotic equation. Generally speaking, 
only this term is independent of the position of the auxiliary boundary on which the exact 
solution is replaced by an approximate one (of course this boundary must lie within the 
region w > 11). 

Example. Let us seek a solution of (0.1) on the hodograph plane within the semi- 

strip 0 < w < 00, 0 4 8 < & with one (or more) segment (segments) 0 < IU < u, 8 = f3r 
eliminated. Let us put ,,,# (w, e,) = 6 (,,) (ra- rcA>a== u&) 

where 90 (US 0) denotes the solution corresponding to h = 0, and let us assume appro- 
ximately (5.3) 

This will divide the semistrip o < 9 ( B. into two parts, and the boundary values of 
the function ‘II, will be given in each of them. The resulting simplified problem can be 

solved using the integral transformation (1.5). In particular, for the solution $ (w, 9) in 
the semistrip 0 < 9 < 9r we have 

*(w, o)=tl)(O, e)=o, *(w, 9,)=0(180) *(to, e,)=g(u)(u>ao) 

and similarly to (4.1). 
a3 

$(u. 0) -5s 
a Y a(i +a) ah -r/l;e p(a 

,, th J&k sh J&i31 ’ 
-u)da 

s 
(1 +v)g(v)F(a, -v)dv 

% (5.4) 
To find the boundary of the stagnation zone corresponding to the segment 10 = 0, 

0 < 0 < 81, we can simplify Expression (5.4) even further, repeating the procedure given 
in Section 4. The only difference lies in the fact, that the pole of the integrand making 

the fundamental contribution to the solution, is situated at the point 8 = in f 9,. As the 
result, we have 1 

By (1.27) we have M - l/4 a0 as a0 + 00 , hence (5.4) finally yields 

from which we obtain the following expression for the coordinates of the stagnation 
zone : 

4sao-=jel r (--225t/e1) ’ 
z(e)+Ey(e’= e1(fi-eI)3+ ~r(--.~~~))‘~~ f 

= I 4-l g $dfx 
( > 

(5.6) 

x ctgc [( +ml ne ne 
q-cost3 +sin8 sin- 

81 + 1 ( i ne co9 9 sin - - 
81 

nsinO cos 
ne 

81 
e 

1 )I 

The distance between the tip of the stagnation zone and the source is equal, with the 

accuracy of up to the terms tending to zero with decreasing h, to the distance between 
the critical point of the flow @ = 0) and the source,.provided that the linear filtration 
law is obeyed. This result which is obvious, can be obtained from the formulas analogous 
to (4.9) and (4.10). 

2*. We shall in addition consider a flow generated by a source-sink combination of 
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equal strength. In this case an outer stagnation zone is formed in the physical plane 
(Fig. 2 of [l]) and the corresponding problem in the hodograph plane is that of obtaining 
a solution of Eq. (0.1) on the semistrip 0 < W < co, 0 < 8 < 2n with a cut 

0 =n,a <w (00. Wehave J, =O on the outer boundary and $ = Q along the 
cut. Let us produce an auxiliary boundary h < w = a' < a, 0 ( 8 < 2n and 
denote 

*(a’, e> =fP) (5.7) 
Solution of (0.1) in the rectangle 0 < 8 < 21x 0 < w ( a’ can be obtained by 

the Fourier’s method, and has the form 

where f, are the coefficients of expansion off(e)i a sine series on the segment 

(0, 2 J-t). 
As the result, we have the following expression for the boundaries of the stagnation 

zone : 

~4e)+~W=W+~ i 
m~=l F (2 

_l,lm,2$,2m 3 
, t - a’/?4 ’ 

X.-!!L._ 
[ 

m cos 0 cos ‘fzrnO + 2 sin 6 sin l/zmf3 

ma-4 ma-4 
- 

--i 
m shi 0 cm l/zmO -- 2 cos 0 sin ‘lam0 

m2--4 I 
(5.9) 

This can be simplified for small h by considering the asymptotic behavior of the 
hypergeometric function appearing in the denominator, as a’/h + 00. When m < 4. 
then the asymptotic equation follows from the formula for the analytic continuation 

( [S]. Formula 2.1(18)) 

F 2 
( 

-fm; 2+ &a, 3, -f)-(~)-z+“gm,,,+~,,“,‘,‘,“l,+,m, (5.10) 

When m are large and even, F becomes a polynomial in (a’/h) of degree l/s m - 2 ; 
for odd m ,the asymptotic formula (5.10) holds. Thus,(S. 9) yields the expansion in terms 
of functions of h of order increasing with m and the principal term of the expansion has 

the form 

x cos0cos$+2sin0sin$- 
[ 

1 +i(sint3cos~-2tm47 sin+)] (5.11) 

When computing this term, we can simplify the expression for 11, by taking it for the 
case h = 0, We then have 

4% 0% 6) =++Im$- arcsin 
( 

2UJ is 
1 + 0 e 

1 (0 < 6 < 4 

lo (8) = $0 (a, 6) = arcsin 1 + T eio) (5.12) 

from which we obtain 

Inserting this into (5.11) we see that the result is, as expected, independent of the 
choice of the boundary a’ and is equal to 
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64 Q 
---x z(e)+ iY(w=x(o) + gn (~a)% 

x co.90 cos $+2sinoain -$ - i + i 
( 

0 
sin 0 cos y- - 2 cos 0 sin (rl.13) 

Before we return to the physical plane, we must establish the connection between the 
auxiliary parameter 11 and the distance 21. between the source and the sink. We have 

(see e. g. Cl]) 
(5.14) 

Obviously, the principal term of L can be obtained under the assumption that A-0,i.e. 

L = r i?$, (w, n) ‘dw Q ca ,=- s dw =Wf2--1)Q 
a0 W= z o wa/: faS_w 

(5.15) 
na 0 

and (5.13) can then be written as 

z (6) + iy (0) = + (” (’ +fitz) QL )” x (5.16) 

X eos6sin++2sin8sin++i 
6 

sin6cos -2--2cosOsin + )I 
where x (0) is computed under the symmetry condition + (0) = --I (2n). 

3’. We can find how small l:must be in order to make the principal term sufficient 
by calculating this term in a problem possessing an exact solution. 

Consequently, we shall consider the flow due to an infinite row of identical sources of 
strength 4 Q (see C2] ). On the hodograph plane, this problem reduces to that of obtaining 
a solution on the semistrip 0 < 6 < l/s n, 0 < w < 00 under the following conditions: 

‘# (w, 6) -9 (0, 6) = 0, $ (ID, 'lan) = 0, (w < a), $ (w, '/zn) = Q (w > 0) 

Here the value of g is given and the principal term of the series solution is obtained 
at once by inserting g = Q into (5.6). This yields 

z(e)+ig(6) = lim 8Qn r(-2n/e1) L n2 x 
G+n n---e1 1r(--n/e~)12 

c"gK 
I 

X [(2 cos 28 cos 8 + sin 8 sin ae) + i (~0s 0 cos 28 - 2 sin 8 cos 2O)l= 

4QJ. =. jna2 (- COS* e + i sin3 0) 

from which we obtain, using the relation a = Q IL, where L is the half distance between 
two neighboring sources. 5 (6) + i?/ (6) 4J.L 

L =zj- 
(- c0sa 8 + i sin!+ 6) (5.17) 

Fig. 1 shows the approximate (solid lines) and exact (broken lines) solutions. The 
accompanying numbers denote the corresponding values of the parameter a0 = Q / AL. 

4’. When h is sufficiently small, the same method can be applied to more complex 
flows for which one to one mapping to and from the hodograph plane is not possible. 

Here stagnation zones may appear either near the critical points of the unperturbed flow 
(h.= oj or near the point at infinity, i. e. near those points of the unperturbed flow, at 
which the velocity becomes zero and h is real;however small. A circle can be drawn 
around each critical point, on which the velocity W will have a constant value a > 1. 
and the distribution of the stream function and velocity on these circles can be assumed 
to be the same as that at h = 0.. The flow within the circles will possess a localized 



884 V. hf. Entov and R. L. Salganib 

symmetry and will consist of a number of 
equal sectors each of which can be mapped 
on a rectangle in the hodograph plane. Thus 

it is easy to obtain an approximate flow pat- 
tern and stagnation zones in the isolated 
regions. The outer stagnation zones surround- 
ing the point at infinity are, of course, the 
most interesting ones, since the stagnation 
zones near the inner critical points of the 
flow are small, when 5 is small. 

The authors express their gratitude to 

Fig. 1 

G. I. Barenblatt for the comments made and 
to I. I. Eremina and T. N. Ivanova for the help 
rendered. 
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Appearance of a secondary steady flow which is a Taylor vortex, caused by the loss of 
stability of the Couette flow between the rotating (in the same direction) cylinders is 
investigated using the Liapunov-Schmidt method. It is shown that the secondary solution 
can be obtained in the form of a series in powers of the parameter e = (NRe - Nn,.) % 

where N,, is the Reynolds’ number and Nu,,. denotes its critical value. First two terms 
of the series are analised for two separate cases and it is established that the Taylor vor- 
tex is defined uniquely with the accuracy of up to the displacement in the axial direc- 
tion. Perturbation theory is used to show that at small s the Taylor flow is stable with 


